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Abstract—The worldwide major blackout events of power
network are highlighting the need for technology upgra-
dation in traditional grid. One of the major upgradations
required is in the area of early warning generation in case of
any grid disturbances such as line contingency leading to
cascade failure. This paper proposes a proactive blackout
prediction model for a smart grid early warning system. The
proposed model evaluates system performance probabilis-
tically, in steady state and under dynamical (line contin-
gency) state, and prepares a historical database for normal
and cascade failure states. A support vector machine (SVM)
has been trained with this historical database and is used
to predict blackout events in advance. The key contribution
of this paper is to capture the essence of the cascading
failure using probabilistic framework and integration of
SVM machine learning tool to build a prediction rule, which
would be able to predict the scenarios of the blackout as
early as possible. The proposed model is validated using
the IEEE 30-bus test-bed system. Proactive prediction of
cascade failure using the proposed model may help in
realizing the grid resilience feature of smart grid.

Index Terms—Cascade failure, cumulative distribution
function (CDF), Gaussian distribution, probability density
function (PDF), support vector machine (SVM).

I. INTRODUCTION

CASCADE failure is a mechanism where failures prop-
agate to cause large blackouts of the electrical power

system. These blackouts impact on the social, economic, and
industrial growth of the country. Some of the major worldwide
blackouts recorded and reported in the literature [1] are the
following: July 2 and August 10, 1996, blackout in the U.S.;
August 14, 2003, blackout in North America; September 28,
2003, blackout in Italy; November 4, 2006, blackout in Europe;
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and the two consecutive severe blackouts on July 30 and 31,
2012, in the Indian power grid [2], [3].

The severity of such incidences has motivated researchers to
understand and analyze past blackout events and propose a real-
time proactive prediction model to prevent massive blackouts.
The real-time exchange of data and information needed for
early warning system is made possible by the recent advance-
ments in communication technology and sensors [4]–[10] in
smart grid.

To understand cascading effect in the traditional grid, a prob-
abilistic load flow model was proposed and compared with a
deterministic model [11], [12] in terms of density function. Im-
pact of network uncertainties in the power system was modeled
in [13] and [14] using distribution factor concept as a function
of linear power injections. The statistical process monitoring
is a powerful tool for detecting faults in industrial systems
[15]. A stochastic Markov model was used in [16] to capture
the progression of cascading failure and its time span. Smart
grid was modeled as interdependent complex networks in [17],
and cascade failure was analyzed using percolation theory. The
increased blackout risk analysis was carried out by [18] using
autocorrelation techniques. The analysis results showed that
correlation significantly increased before reaching critical line.
A probabilistic-regeneration-based approach was proposed in
[19] to model the dynamics of cascading failures in power
grids using Monte Carlo (MC) simulations. A probabilistic
framework for evaluation of smart grid resilience of cascade
failure was explored in [20], and the simulation result showed
that statistical analysis of probabilistic power flows model is
useful for evaluation of cascade failure.

The next-generation power grid, i.e., the smart grid [21], de-
mands high reliability and robustness against cascading failure.
The prediction based on stochastic methods with MC, Markov
model, and percolation theory is computationally exhaustive
and not explored much for proactive prediction. Integration
of computational intelligence (CI) with traditional blackout
prediction techniques can provide a feasible solution to analyze
current, past, and future performance of the grid and increase
the reliability of the power system. Researchers are using CI
methods to solve many challenging problems [21], [22] of the
traditional grid and contributing to a complete realization of
smart grid. These intelligent technologies build offline patterns
for each operating condition of the grid and monitor an online
pattern of the grid status. A classifier compares the previously
learned patterns with the pattern generated online in order to
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classify the grid operating condition and identify the status of
the grid.

Most of the researchers used machine learning tools in
the power grid to solve fault identification and localization
purposes. In [23]–[25], the artificial neural network (ANN) or
pattern recognition techniques were employed for faults clas-
sification in induction motors (IMs). An artificial intelligence
technique is used as an unsupervised classification technique in
[26] for the detection and diagnosis of faults in IM. An energy
management system for the optimal operation of smart grids
and microgrids was proposed in [10] using fuzzy clustering
neural networks (NNs) combined with optimal power flow.
They used genetic algorithms and fuzzy clustering as a training
algorithm.

Machine learning techniques for transforming historical elec-
trical grid data into models to predict the risk of failures for
components and systems were explored in [27]. ANN tech-
niques are based on observed error minimization principle,
which gives local optimal solution, low convergence rate, and
low generalization with less number of samples [28]. Compared
with ANN, support vector machine (SVM) is formulated as
a quadratic programming problem and gives global optimal
solution [29]. The solutions provided by SVMs are theoretically
elegant, computationally efficient, and very effective to handle
many practical problems.

An SVM machine learning tool was used in [28] for the
identification of fault type and location in power distribution
system with distributed generation. SVM-based smart relays for
mitigation of future blackouts were proposed by [30] to detect
location of the fault in the power system.

This paper is a contrast with the earlier blackout work where
data and estimated model parameters were derived from MC
simulations, and the MC simulated failures were predicted.
Database has been created for this paper from the proposed
probabilistic model, simulated and verified on IEEE 30-bus
test bench system, and used as a historical database. The
SVM model has been trained on the basis of this database
for blackout prediction. ANN and SVM machine learning
tools were used by most of the researchers for identification
and location of faults in the power system. This paper pro-
poses a new model where SVM tool is used for proactive
blackout prediction in the power system. The methodology
used in this paper is capable of analyzing transmission line
contingency with the help of probabilistic framework, and
at the same time, it can also compare online statistical data
with the stored blackouts historical data and predict possible
blackout.

This paper is organized as follows. Section II presents power
flow model under normal and perturbed conditions of the grid.
Theory of SVM is described in Section III. The proposed
model is explained in Section IV in two phases. Phase A is an
offline probabilistic framework for the generation of historical
database (normal and blackout). Phase B explains the modeling
of SVM and online state classification. Section V presents a
case study to validate the proposed proactive cascade predic-
tion model using IEEE 30-bus test-bed system with modeling
and simulation. Some open research issues are discussed in
Section VI along with conclusions.

II. GRID POWER FLOW ANALYSIS

Cascade prediction in a power grid requires study and analy-
sis of the power flow, both in normal operating conditions and
under perturbed conditions.

A. Power Flow Under Normal Grid Working

A power grid is a complex network where generator and
load buses can be assumed as nodes and transmission lines
transformers as links. The net power injected into a node is
equal to the total amount of power flowing to neighboring
nodes through transmission lines or transformers. The angles
δi and δk are the voltage phase angles at node i (sending) and k
(receiving) link, respectively; and Xik is the series reactance of
the link between nodes i and k. In general, the active power flow
over a line connected to nodes i and k [31] can be defined as

Pik = −Pki =
|Vi||Vk|
Xik

sin(δi − δk). (1)

For DC power flow, the voltage magnitude at all nodes is main-
tained at 1 per unit. Furthermore, as the system synchronization
is always maintained under normal operating conditions, the
angular difference between two neighboring nodes is very
small. Hence, (δi − δk) being very small, sin(δi − δk) is
approximately equal to (δi − δk), which will modify (1) to

Pik =
(δi − δk)

Xik
. (2)

Equation (2) determines power flow under a specific operating
condition with initial installation capacity (IC), and the
accuracy of the model depends on the accuracy of the input
data. Any changes in input data will change power flow
analysis. As soon as load flow exceeds its IC, the line will trip.
Tripping of one line will change corresponding node phase
angles δi and δk; hence, it redistributes the power flow in the
grid. Power redistribution may further change grid variables
such as current, voltage, active/reactive power, and phase angle
and initiate cascading failure. For the stability of the grid, prior
knowledge of the line outage is required. The multivariate
phenomena of deterministic load flow increase complexity to
predict the line outage in advance.

The probabilistic load flow analysis of normal grid operation
(base case, with load flow under IC) considers the normal
(symmetrical/Gaussian) distribution of power flow. Under the
cascading failure, probabilistic load flow takes uncertainties
into account, such as probability of a line flow being greater
than the capacity of the transmission line, and the grid variables
are considered as random variables. In such a scenario, the
probability distribution curves will no longer be symmetrical.
Hence, the behavior of the grid (switching from normal to
cascading failure) can be analyzed in depth with the probability
distribution curves and statistical parameters such as proba-
bility density function (PDF), cumulative distribution function
(CDF), mean, variance, and higher order moments.

A probabilistic model [32] can be designed on the basis of
a time instance model for cascade prediction and a time period
model for power flow analysis. The time period model over a
certain period T is used to calculate and analyze load duration



2480 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 4, APRIL 2015

curve, mean, variance, and CDF function for (x, T ), where x is
the input data (percentage power loading in the transmission
lines). The time period model over a certain period T of a
transmission line can be described by Gaussian distribution [33]
under normal grid operation. Thus,

PDF = f(x) =
1

σ
√
2π

e−
(x−μ)2

2σ2 (3)

CDF =F (x) =
1

σ
√
2π

t∫
−∞

e−
(x−μ)2

2σ2 dx (4)

where
σ = standard deviation of random variable;
σ2 = variance of random variable;
x = random variable (current, voltage, power, phase

angle);
μ = mean value of random variable;
f(x) = probability density function (PDF).
In (3), the line with highest PDF value in the observed

time scale (sample) is used in the probabilistic framework for
prediction of the next line outage, and for each sample time T ,
its mean and variance are calculated as

μ =
1

N

N∑
n=1

xn (5)

σ2 =
1

N

N∑
n=1

(xn − μ)2 (6)

where N = (1, 2, . . . , n) represents the number of samples.
Equations (3)–(6) are used in this paper to capture the statistical
information of the grid parameters under normal working state
for a time period T and used as normal grid feature vectors.

B. Power Flow Under Perturbed Condition of Grid

Analysis of power flow on the transmission line in perturbed
condition such as line tripping provides the information of ran-
dom variables. Critical transmission line analysis is performed
in [34] to find which lines may have negative maximum impact
on the grid when they are removed from the system. Tripping of
the line will change grid variables and symmetry of probability
distribution curves. Hence, to know the lack of symmetry in
probability distribution curve, higher order moments [33] such
as skewness (third moment) and kurtosis (forth moment) have
been used in this paper, i.e.,

Skewness =

∑N
i=1(xi − μ)3

(N − 1)s3
(7)

Kurtosis =

∑N
i=1(xi − μ)4

(N − 1)s4
(8)

where s is a standard deviation. The probabilistic model pre-
dicts line outage based upon current line status (line having
maximum PDF), and when CDF reaches unity, the system
will trip (blackout). The proactive cascade prediction model
relies on intelligent soft computing or machine learning tools
to predict cascade in advance so that the entire system can be
protected against such cascade failures.

III. THEORY OF SVM

SVM is a kernel-based supervised computational method,
which is based on the statistical learning theory [35]. An SVM
kernel maps the input data points of the original input space to
the higher dimensional feature space. An optimal hyperplane
is determined in feature space to define a decision boundary,
which separates the input data points of different classes and
recognizes patterns for classification and regression.

This paper uses statistical state information of transmission
lines from (3)–(8) as an input to SVM model, and SVM is
trained in such a way that the direct decision function max-
imizes the generalization ability for the classification of grid
state, normal or blackout. Consider that M,m-dimensional
training inputs xi, (i = 1, . . . ,M) belong to class 1 or class 2
and then the associated labels be yi = 1 for class 1 and yi = −1
for class 2. If these data are linearly separable, the decision
function can be determined as

D(x) = wTxi + b (9)

where w is an m-dimensional vector, b is a bias term, and i
varies from 1 to M .

(wTxi + b)

{
≤ −1, for yi = −1
≥ 1, for yi = 1.

(10)

This equation can be expressed as

yi(w
Txi + b) ≥ 1, for i = 1, 2, . . . ,M. (11)

The optimal separating hyperplane can be obtained by solving
the following convex quadratic optimization problem for w, b,
and ξ [29]:

minQ(w, b, ξ) =
1

2
‖w‖2 + C

M∑
i=1

ξi (12)

subject to :

yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, for i = 1, 2, . . . ,M (13)

where ξ = (ξ1, . . . , ξM )T is a nonnegative slack variable (ξ ≥
0), and C is the margin parameter, which determines the
tradeoff between the maximization of the margin and the mini-
mization of the classification error.

To enhance linear separability, kernel trick is used in which
the original input space is mapped into high-dimensional dot
product space called the feature space. In SVM, according to
the need of classification, a kernel has to be selected, and the
values of the kernel parameter and the margin parameter C have
to be determined.

The complexity and the generalization capability of the
network depend on the value of the kernel parameter, since it
has an influence on the smoothness of SVM response and it
affects a number of support vectors. Hence, to build an opti-
mized classifier, the optimized values of the margin parameter
and the kernel parameter must be determined, which is called
model selection. To avoid overfitting problem, cross-validation
procedure has been used in this paper for model selection. In
cross validation [36], a complete training set is divided into v
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subsets of equal size; then, sequentially, one subset is tested
using the classifier trained on the remaining (v − 1) subsets.
This way, each instance of the whole training set is predicted
once during SVM modeling.

IV. PROPOSED PROACTIVE BLACKOUT

PREDICTION MODEL

As shown in Fig. 1, wide area monitoring system (WAMS)
collects online and offline information from the grid. Online
data are phase synchronized data such as voltage/current and
power flow measurements of grid from phasor measurement
unit (PMU). Offline data are a historical database of various
operational parameters such as past blackout, islanding, or
transformer outage historical data. The proposed work consists
of two phases. Phase A is an offline probabilistic framework
for the generation of historical database, and Phase B is a train-
ing/testing of SVM model for proactive blackouts prediction
and online state classification.

1) Phase A: (Probabilistic framework for historical
database) Assume a power grid having L transmission
lines with maximum available capacity C (80% of IC).
The lines can be characterized at time T as a state, which
can be either normal (running) state or tripping (failure)
state with 95% confidence level (CL, estimated range of
values) and 5% level of significance (LOS, threshold of
probability) [33]. Upper bound (UB) and lower bound
for confidence intervals are computed from probability
distribution. If the random variable (power flow data)
is within the normal distribution and CDF < 1, this
indicates running state (normal state), whereas CDF = 1
indicates blackout [20]. Prediction of the next line outage
is the line that is having highest PDF value in the current
sample span at time T . As shown in Fig. 1, (Phase A)
blackout will occur when CDF becomes 1. The normal
and blackout statistical data of a grid are stored in the
historical database and further utilized as an input feature
vector for training and testing of SVM.

2) Phase B: (SVM model for proactive prediction) The aim
of SVM training is to train a model based on the historical
data in such a way that the model can predict the target re-
sult of the test data by giving only the test data attributes.
An SVM model has been developed, as shown in Fig. 1
(Phase B). Here, SVM is used as a binary classifier, and
based on the output of the SVM classifier, predictions are
made whether the grid is working normally or blackout
will happen.

V. CASE STUDY FOR VALIDATION OF

THE PROPOSED MODEL

The IEEE 30-bus test-bed system [37] has been built in
PowerWord Simulator and used in this paper as a prototype
power network. As shown in Fig. 2, the test bed consists
of 30 buses, six generator buses, and 21 load buses, with
41 transmission lines consisting of 289.1-MW generation and
283.4-MW load flow capacity. The system has been modeled by

Fig. 1. Proposed model for proactive cascade failure prediction.

Fig. 2. One-line diagram of the IEEE 30-bus test-bed system.

maintaining impact of the line contingency as a linear function
of changes in power flow on transmission line.

A. Phase A: Offline Framework for Historical Database

Cascade analysis and generation of historical database are
carried out offline in Phase A.

1) Case 1, Normal working of the grid: The IEEE 30-bus
test bed consists of 41 transmission lines, and at time T ,
it has 41 data samples of power flow, which are shown
in Fig. 3. According to the central limit theorem [33],



2482 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 4, APRIL 2015

Fig. 3. Power flow in transmission line of test-bed base case.

Fig. 4. Gaussian PDF as a function of power flow in the lines.

Fig. 5. CDF plot as a function of power flow in the transmission line.

the sum of a larger number (more than 30 data samples)
of independent random variables tends to be a Gaussian
random variable. Hence, under normal grid operation
with load flow under IC, the probability distribution is
considered as Gaussian distribution with 95% CL and 5%
LOS, which is shown in Fig. 4. A cumulative distribution
of power flow is plotted in Fig. 5, where all the data are
properly fitted inside the CL, and CDF < 1; hence, all the
lines are healthy at the base case. The statistical analysis
of the base case is reflected in Tables I and II.

2) Case 2, Cascade failure: In Case 2, the system has been
modeled with the consideration of line outage (perturbed

TABLE I
CASCADE ANALYSIS BASED ON STATISTICAL DECISION THEORY

TABLE II
HISTORICAL DATABASE PARAMETERS

condition). For the analysis of probability distribution
under cascade failure, cascading is initiated by tripping
one of the highly loaded lines, i.e., L21 between nodes 10
and 21 in Fig. 2. The probability of the next line tripping
has been calculated by using statistical decision theory.
Analysis of the cascading failure is carried out with Cases
2a, 2b, and 2c.
a) Case 2a is a power flow analysis after tripping of line

L21. Figs. 6 and 7 are the PDF and CDF plots after
line contingency, respectively. The statistical analysis
of the PDF and CDF plots in Table I indicates that the
next probable tripping line that is having highest PDF
in the time slot T is line L22.

b) Case 2b is a contingency analysis after tripping of
line L22 (between nodes 10 and 22) of the IEEE 30-
bus system. As shown in Fig. 8, tripping of line L22
has changed probability distribution from Gaussian to
non-Gaussian. The corresponding CDF plot is shown
in Fig. 9. The nonsymmetry in Gaussian distribution
is analyzed by higher order moments, and the results
are given in Tables I and II. Statistical analysis and
hypothesis test predict that line L29 has the highest
power loading and maximum PDF and CDF values;
hence, line L29 (between nodes 15 and 23) will be the
next possible tripping line in Case 2b.

c) In Fig. 10, of Case 2c, tripping of L29 indicates
non-Gaussian distribution with heavy tail. The corre-
sponding CDF plot is shown in Fig. 11, where UB is
crossing the limits (LOS), and the value of CDF
reaches unity. The corresponding statistical analysis
is shown in Tables I and II. Hence, according to sta-
tistical analysis and hypothesis testing, this scenario
indicates potential cascade failure.

3) Simulation analysis: The probabilistic framework cap-
tured the essence of the cascading failure and analyzed
the transition behavior of power flow in the transmission
line from normal to cascade failure. This is shown in
Figs. 12 and 13. As shown in Fig. 12, the behavior of
the PDF changed just before the blackout (PDF of Case
2a to Case 2b), and this is the point that is used for
blackout prediction in the proposed model. Similarly, a
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Fig. 6. Case 2a: PDF plot after tripping of line L21.

Fig. 7. Case 2a: CDF plot after tripping of line L21.

comparative CDF analysis is carried out in Fig. 13 for
normal grid to blackout scenario.

The nonsymmetry in Gaussian distribution is analyzed
by higher order moments using (7) and (8) and summa-
rized in Table II. As shown in Table II, under normal
condition, third- and fourth-order moments values are
negligible, but as the system enters into cascading failure
stage, statistical data in Table II indicate significant in-
crease in skewness and kurtosis. This behavior highlights
changes from Gaussian to non-Gaussian distribution.

The complete statistical data in Table II represent one black-
out event values in historical database. Using the same pro-
cedure, a database of more than 50 such cases are simulated,
verified, and stored in the historical database. Now, this historical
database is used as an input feature vector to the SVM model.
For training and testing of SVM, MATLAB LIBSVM toolbox
is used.

B. Phase B: SVM Modeling for Proactive
Blackout Prediction

Historical database of mean, variance, skewness, and kurtosis
is used as input feature vectors to SVM for training, testing, and
classification. SVM modeling steps are as follows.

1) Data acquisition: Historical data are acquired from Phase
A of the proposed model.

2) Kernel selection: The different kernels are applied to the
input data, and the results are tabulated in Table III. The
result in Table III shows that the radial basis function

Fig. 8. Case 2b: PDF plot after tripping of line L22.

Fig. 9. Case 2b: CDF plot after tripping of line L22.

Fig. 10. Case 2c: Non-Gaussian distribution after tripping of line L29.

(RBF) kernel gives maximum training and testing accu-
racy. Hence, the RBF kernel has been selected.

3) Model selection: Using cross validation, find out the opti-
mal values for kernel parameter γ and margin parameter
C, which gives C = 2 and γ = 0.25.

4) To cross check the values of C and γ obtained from cross
validation, a series of experiments have been performed.
Initially, C is taken as 2, and the value of γ varies, as
shown in Fig. 14. For γ ≥ 0.0015, the training and testing
accuracy achieved was 100%. The same procedure is
followed for finding the value of C. As shown in Fig. 15,
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Fig. 11. Case 2c: CDF plot after tripping of line L29.

Fig. 12. Gaussian to non-Gaussian distribution of power in the test-bed
system.

Fig. 13. CDF plots of normal to blackout cases in the IEEE 30-bus
test-bed system.

TABLE III
KERNEL SELECTION FOR THE SVM MODEL

at γ equal to 0.25, the value of C ≥ 0.73 gives 100%
training and testing accuracy. Hence, for C ≥ 0.73 and
γ ≥ 0.0015, the training and testing accuracy is 100%.

Fig. 14. SVM kernel parameter selection.

Fig. 15. SVM margin parameter selection.

VI. CONCLUSION

This paper has presented a probabilistic viewpoint of cascade
failure in grid with intelligent SVM machine learning tool
for proactive blackout prediction. The probabilistic framework
explored the dynamics of power flow moving from pre- to post
blackout. Simulation results and statistical analysis show that,
under normal power flow in the grid, the probability distribution
observed was Gaussian, but as cascading propagates, the proba-
bility distribution moves toward non-Gaussian distribution. The
analysis of transition from Gaussian to non-Gaussian probabil-
ity distribution has helped us to train the SVM model with high
accuracy. The SVM output may be used to initiate emergency
control systems for prevention against blackout. The proposed
model can be used for proactive cascade prediction in planning
and maintenance of smart grid early warning system. The future
scope of the proposed model is in the field of real-world com-
plex power networks, which demands real-time contingency
analysis with self-healing and robust systems. This addresses
various open research issues such as prediction and prevention
of cascade failure with self-healing and robust systems. The
proper integration of machine learning tools with probability
theory and real-time communication technologies can achieve
system-level objectives in the smart grid.
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